
Week 5 - Monday

 What did we talk about last time?
 Scope
 Systems programming

A C program is like a fast dance on a newly waxed
dance floor by people carrying razors.

Waldi Ravens

 In Windows, each drive has its own directory hierarchy
 C: etc.

 In Linux, the top of the file system is the root directory /
 Everything (including drives, usually mounted in /mnt) is under the top

directory
 /bin is for programs
 /etc is for configuration
 /usr is for user programs
 /boot is for boot information
 /dev is for devices
 /home is for user home directories

 Every file has a UID and GID specifying the user who owns the file and the
group the file belongs to

 For each file, permissions are set that specify:
 Whether the owner can read, write, or execute it
 Whether other members of the group can read, write, or execute it
 Whether anyone else on the system can read, write, or execute it

 The chmod command changes these settings (u is for owner, g is for
group, and o is everyone else)

 Example that adds the execute (x) permission to others (o) on a file called
script.sh:

chmod o+x script.sh

 All I/O operations in Linux are treated like file I/O
 Printing to the screen is writing to a special file called stdout
 Reading from the keyboard is reading from a special file called
stdin

 When we get the basic functions needed to open, read, and
write files, we'll be able to do almost any kind of I/O

 To declare an array of a specified type with a given name and
a given size:

 Example with a list of type int:

type name[size];

int list[100];

 When you declare an array, you are creating the whole array
 There is no second instantiation step
 It is possible to create dynamic arrays using pointers and malloc(), but

we haven't talked about it yet
 You must give a fixed size (literal integer or a #define constant)

for the array
 The version of gcc we are using allows variables, but some older (and

newer) versions of C do not
 These arrays sit on the stack in C
 Creating them is fast, but inflexible
 You have to guess the maximum amount of space you'll need ahead of

time

 You can access an element of an array by indexing into it, using
square brackets and a number

 Once you have indexed into an array, that variable behaves
exactly like any other variable of that type

 You can read values from it and store values into it
 Indexing starts at 0 and stops at 1 less than the length
 Just like Java

list[9] = 142;
printf("%d", list[9]);

 The length of the array must be known at compile time
 Our version of gcc has looser rules about this, but C90 insists on true

constants
 There is no length member or length() method
 It's common to keep track of how many elements are used in

an array with a separate length variable

int list[100];
list[0] = 5;
list[1] = 17;
int length = 2;

 When you create an array, it is not automatically filled with
any particular value

 Inside the array (like any variable in C) is garbage
 With regular variables, you might get a warning if you use a

variable before you initialize it
 With an array, you won't

 Explicit initialization can be done with a list:

 You can omit the size if you use an explicit initialization because
the compiler can figure it out

int primes[10] = {2, 3, 5, 7, 11, 13, 17,
19, 23, 29};

char grades[] = {'A', 'B', 'C', 'D', 'F'};

 The C standard library has a function called memset() that can set all
the bytes in a chunk of memory to a particular value

 Using it is guaranteed to be no slower than using a loop to initialize all the
values in your array
 It usually uses special instructions to set big chunks of memory at the same time

int values[100];
// Zeroes out array
memset(values, 0, sizeof(int)*100);
char letters[26];
// Sets array to all 'A's
memset(letters, 'A', sizeof(char)*26);

 memset() is mostly useful for initialization (and usually only for
zeroing things out)

 memcpy() is a fast way to copy values from one array to another
 Again, it's at least as fast as using your own loop
 Again, it's somewhat dangerous since it lets you write memory places en

masse

int cubes[100];
int copy[100];
for (int i = 0; i < 100; i++)
cubes[i] = i*i*i;

memcpy(copy, cubes, sizeof(int)*100);

 When using an array in a different function, you usually have to
pass in the length

 The function receiving the array has no other way to know what
the length is

 The function should list an array parameter with empty square
brackets on the right of the variable

 No brackets should be used on the argument when the function is
called

 Like Java, arguments are passed by value, but the contents of the
array are passed by reference
 Changes made to an array in a function are seen by the caller

 Calling code:

int values[100];
for(int i = 0; i < 100; i++)
values[i] = i + 1;

reverse(values, 100);

 Function:

void reverse(int array[], int length)
{
int start = 0;
int end = length – 1;
int temp = 0;
while(start < end)
{

temp = array[start];
array[start++] = array[end];
array[end--] = temp;

}
}

 In C, you can't return the kind of arrays we're talking about
 Why?

 They're allocated on the stack
 When a function returns, all its memory disappears
 If you dynamically allocate an array with malloc(), you can

return a pointer to it

 An array takes up the size of each element times the length of
the array

 Each array starts at some point in computer memory
 The index used for the array is actually an offset from that

starting point
 That's why the first element is at index 0

 We can imagine that we have an array of type int of length
10

 Let's say the array starts at address 524

12 43 -9 6 789 0 -23 23 10 6

0 1 2 3 4 5 6 7 8 9

524 528 532 536 540 544 548 552 556 560
Addresses

Indexes

 It is legal to declare multidimensional arrays in C

 They'll work just as you would expect
 Except! You have to give the second dimension when passing to a function (otherwise, it

won't know how big of a step to take when going from row to row)

char board[8][8];

void clearBoard (char board[][8])
{
for(int i = 0; i < 8; i++)

for(int j = 0; j < 8; j++)
board[i][j] = ' ';

}

 Write a program that reads an integer from the user saying how many
values will be in a list
 Assume no more than 100
 If the user enters a value larger than 100, tell them to try a smaller value

 Read these values into an array
 Find
 Maximum
 Minimum
 Mean
 Variance
 Median
 Mode

 Strings

 Keep reading K&R chapter 5
 Start on Project 3
 Form teams if you haven't yet!

 Exam 1 next Monday!

	COMP 2400
	Last time
	Questions?
	Project 3
	Quotes
	Single file system
	File permissions
	File I/O
	Arrays
	Declaration of an array
	Differences from Java
	Accessing elements of an array
	Length of an array
	Arrays start filled with garbage
	Explicit initialization
	memset()
	memcpy()
	Passing arrays to functions
	Array to function example
	Array to function example
	Returning arrays
	Array Memory
	Memory
	A look at memory
	Multidimensional arrays
	Array example
	Upcoming
	Next time…
	Reminders

