
Week 5 - Monday



 What did we talk about last time?
 Scope
 Systems programming







A C program is like a fast dance on a newly waxed 
dance floor by people carrying razors.

Waldi Ravens



 In Windows, each drive has its own directory hierarchy
 C: etc.

 In Linux, the top of the file system is the root directory /
 Everything (including drives, usually mounted in /mnt) is under the top 

directory 
 /bin is for programs
 /etc is for configuration
 /usr is for user programs
 /boot is for boot information
 /dev is for devices
 /home is for user home directories



 Every file has a UID and GID specifying the user who owns the file and the 
group the file belongs to

 For each file, permissions are set that specify:
 Whether the owner can read, write, or execute it
 Whether other members of the group can read, write, or execute it
 Whether anyone else on the system can read, write, or execute it

 The chmod command changes these settings (u is for owner, g is for 
group, and o is everyone else)

 Example that adds the execute (x) permission to others (o) on a file called 
script.sh:

chmod o+x script.sh



 All I/O operations in Linux are treated like file I/O
 Printing to the screen is writing to a special file called stdout
 Reading from the keyboard is reading from a special file called 
stdin

 When we get the basic functions needed to open, read, and 
write files, we'll be able to do almost any kind of I/O





 To declare an array of a specified type with a given name and 
a given size:

 Example with a list of type int:

type name[ size ];

int list[ 100 ];



 When you declare an array, you are creating the whole array
 There is no second instantiation step
 It is possible to create dynamic arrays using pointers and malloc(), but 

we haven't talked about it yet
 You must give a fixed size (literal integer or a #define constant) 

for the array
 The version of gcc we are using allows variables, but some older (and 

newer) versions of C do not
 These arrays sit on the stack in C
 Creating them is fast, but inflexible
 You have to guess the maximum amount of space you'll need ahead of 

time



 You can access an element of an array by indexing into it, using 
square brackets and a number

 Once you have indexed into an array, that variable behaves 
exactly like any other variable of that type

 You can read values from it and store values into it
 Indexing starts at 0 and stops at 1 less than the length
 Just like Java

list[9] = 142;
printf("%d", list[9]);



 The length of the array must be known at compile time
 Our version of gcc has looser rules about this, but C90 insists on true 

constants
 There is no length member or length() method
 It's common to keep track of how many elements are used in 

an array with a separate length variable

int list[100];
list[0] = 5;
list[1] = 17;
int length = 2;



 When you create an array, it is not automatically filled with 
any particular value

 Inside the array (like any variable in C) is garbage
 With regular variables, you might get a warning if you use a 

variable before you initialize it
 With an array, you won't



 Explicit initialization can be done with a list:

 You can omit the size if you use an explicit initialization because 
the compiler can figure it out

int primes[10] = {2, 3, 5, 7, 11, 13, 17, 
19, 23, 29};

char grades[] = {'A', 'B', 'C', 'D', 'F'}; 



 The C standard library has a function called memset() that can set all 
the bytes in a chunk of memory to a particular value

 Using it is guaranteed to be no slower than using a loop to initialize all the 
values in your array
 It usually uses special instructions to set big chunks of memory at the same time

int values[100];
// Zeroes out array
memset(values, 0, sizeof(int)*100); 
char letters[26];
// Sets array to all 'A's
memset(letters, 'A', sizeof(char)*26);



 memset() is mostly useful for initialization (and usually only for 
zeroing things out)

 memcpy() is a fast way to copy values from one array to another
 Again, it's at least as fast as using your own loop
 Again, it's somewhat dangerous since it lets you write memory places en 

masse

int cubes[100];
int copy[100];
for (int i = 0; i < 100; i++)
cubes[i] = i*i*i; 

memcpy(copy, cubes, sizeof(int)*100);



 When using an array in a different function, you usually have to 
pass in the length

 The function receiving the array has no other way to know what 
the length is

 The function should list an array parameter with empty square 
brackets on the right of the variable

 No brackets should be used on the argument when the function is 
called

 Like Java, arguments are passed by value, but the contents of the 
array are passed by reference
 Changes made to an array in a function are seen by the caller



 Calling code:

int values[100];
for(int i = 0; i < 100; i++ )
values[i] = i + 1;

reverse(values, 100);



 Function:

void reverse(int array[], int length)
{
int start = 0;
int end = length – 1;
int temp = 0;
while( start < end )
{

temp = array[start];
array[start++] = array[end];
array[end--] = temp;

}
}



 In C, you can't return the kind of arrays we're talking about
 Why?

 They're allocated on the stack
 When a function returns, all its memory disappears
 If you dynamically allocate an array with malloc(), you can 

return a pointer to it





 An array takes up the size of each element times the length of 
the array

 Each array starts at some point in computer memory
 The index used for the array is actually an offset from that 

starting point
 That's why the first element is at index 0



 We can imagine that we have an array of type int of length 
10

 Let's say the array starts at address 524

12 43 -9 6 789 0 -23 23 10 6

0 1 2 3 4 5 6 7 8 9

524 528 532 536 540 544 548 552 556 560
Addresses

Indexes



 It is legal to declare multidimensional arrays in C

 They'll work just as you would expect
 Except! You have to give the second dimension when passing to a function (otherwise, it 

won't know how big of a step to take when going from row to row)

char board[8][8];

void clearBoard (char board[][8])
{
for(int i = 0; i < 8; i++ )

for(int j = 0; j < 8; j++ )
board[i][j] = ' ';

}



 Write a program that reads an integer from the user saying how many 
values will be in a list
 Assume no more than 100
 If the user enters a value larger than 100, tell them to try a smaller value

 Read these values into an array
 Find
 Maximum
 Minimum
 Mean
 Variance
 Median
 Mode





 Strings



 Keep reading K&R chapter 5
 Start on Project 3
 Form teams if you haven't yet!

 Exam 1 next Monday!
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